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Feasibility of regio- and stereoselective photoreactions within
zeolites has been reported earlier.1 Results presented below
demonstrate that, with zeolite as a reaction medium, facial
selectivity during a photoreaction can be achieved in systems that
possess distinctly different faces.2 Steroids used in this study
(testosterone acetate (1), cholestenone (2), and androstenedione
(3))3 are small enough (width∼8.8 Å and length∼14 Å) to be
included within faujasite-type zeolites and mesoporous silica
MCM-41.4,5 Steroids1-3 were included within a zeolite by
stirring a 10-mL hexane solution of the steroid (∼5 mg) with
about 300 mg of activated zeolite (heating in air at∼500°C) for
about 12 h. The zeolite thus included with steroid was washed
with hexane until the GC analysis indicated the absence of steroid
in the wash. On the basis of the GC analysis, we estimate that
about 3 mg of steroid was included within 300 mg of NaY (1
molecule per 2 supercages). The above zeolite sample was
irradiated (450-W medium-pressure mercury lamp with Pyrex
filter) as a slurry in 5 mL of hexane. Following 2-4 h of irra-
diation, the zeolite was extracted with a tetrahydrofuran-water
(95:5) mixture, and the products were analyzed by GC.6 Products
isolated by combining five irradiations were characterized by their
NMR and mass spectral data and by comparison with authentic
commercial/synthetic samples.3,7 The total isolated yield (reactant
and products) under such conditions (5× 3 mg steroid in 1.5 g
of zeolite) was in the range of 80-90%.
Testosterone acetate (1) and cholestenone (2) have earlier been

established to exhibit a solvent-dependent photobehavior.8,9 The
reaction that is relevant to this report is photoreduction of the
enone CdC double bond. Irradiation of1 and2 in 2-propanol
yields reduction products (∼15% conversion in 2 h) shown in

Scheme 1.10,11 In 2-propanol, addition of hydrogen to carbon-5
of the A ring occurs predominantly from the less-hinderedR-face
of the molecule. Reduction of the enone chromophore does not
take place in hexane as solvent. An unexpected result was
obtained when irradiation of1 and2 included in NaY-hexane
slurry was carried out. Under such conditions, the main reaction
observed was photoreduction and the major product was the
addition from the more-hinderedâ-face of the molecule (5-â).10,12
The hydrogen source for the reduction was established to be
solvent hexane by using perdeuterated solvent. The role played
by the cation became evident when the irradiation was conducted
in cation-free high silica Y and MCM-41.13 In these zeolites, no
reduction occurred. Trace amounts of products of enone rear-
rangement alone were seen by GC, but the amounts were too
low to be isolated and characterized.
In isotropic solution, androstenedione (3) has been established

to react mainly from the cyclopentanone D ring.14 As illustrated
in Scheme 2, the epimerization to yield 13-R-androstenedione is
the major reaction in most solvents; only in 2-propanol reduction
of the cyclohexenone A ring is able to compete with the epi-
merization process.15 Irradiation of3 included in NaY gave only
reduction product (Scheme 2); careful analysis at the initial stages
of irradiation did not show the presence of epimer4. Consistent
with the observations made with1 and2, the reduction of3 oc-
curred from the more-hinderedâ-face and the photobehavior of
3within cation-free materials (high silica Y zeolite and mesopor-
ous MCM-41) was similar to that in hexane solution (Scheme 2).
The observations made above with steroids1-3 relate both to

reactivity and selectivity. Hydrogen abstraction ability of the
enone chromophore is clearly enhanced within NaY. The
reactivity of enone (A ring) in steroid3 is enhanced to such an
extent that products from normally active cyclopentanone (D ring)
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is not seen in NaY. More importantly, there is selectivity in the
reduction process. Within NaY the photoreduction occurs from
the less-expected but more-hinderedâ-face of the steroid.
Steroids1 and 2, in the absence of NaY, are inert toward

solvent hexane (Scheme 1). The importance of cations in the
enhancement of reactivity is evident when the behavior of1 and
2 within NaY is compared to that in cation-free materials such
as high silica Y and MCM-41. No reduction of the enone
chromophore takes place in the latter two zeolites (Scheme 1).
Enhanced reactivity of the cyclohexenone A ring in1 and2, we
believe, can be understood on the basis of a change in the
electronic characteristics of the lowest reactive state. Remarkable
effect of changes in reactivity is seen in the case of3. While
this molecule reacts only from the cyclopentanone D ring in
hexane, no products due to reactions from the D ring are seen
when it is included within NaY. This, we believe, is a reflection
of the lowering of the energetics of the enone chromophore well
below that of the cyclopentanone D ring. While interaction
between zeolitic cation and the cyclopentanone is likely, this is
not the primary cause for the enhanced reactivity of the A ring
enone. Examination of model systems revealed that the reactivity
of the cyclopentanone D ring is not affected within NaY.16 This
suggests to us that lowering of theππ* excited state of the A
ring is responsible for the changes in reactivity of1-3 included
within NaY.

â-Selectivity during the reduction process can be understood
on the basis of two independent models. As per one model, the
selectivity is controlled by the nature of the reactive excited state;
this has literature precedence.8,10 Chan and Schuster have
established in the case of 4a-methyl-4,4a,9,10-tetrahydro-2(3H)-
phenanthrone, a molecule closely analogous to the systems inves-
tigated here, that reduction occurs stereospecifically fromππ*
excited triplet to yield a cis-fused bicyclic ketone. This would
correspond toâ-addition in our examples. On the basis of this

analogy, one would suggest that the changes in the characteristics
of the lowest excited triplet state of the enone chromophore
discussed above is responsible for the observed selectivity.
According to the second model, the facial selectivity is a result
of preference for a particular mode of adsorption by steroids on
the surface of a zeolite. On the basis of established interactions
between aromatic molecules and cations, we suggest that the mode
of adsorption will be controlled by the cation.17 Since the cations
that interact with the enone chromophore are embedded on the
walls of a zeolite, the steroid will be drawn closer to the wall.
Such a process would favor an adsorption mode in which the
least-hindered face (R-face) of the steroid is closer to the wall of
a zeolite exposing the more-hinderedâ-face for the reduction. A
simulated model shown in Figure 1 helps to visualize the
arrangement within a supercage of NaY.18 It should be noted
that despite the steroid molecule lying along a plane passing
through the center of the supercage, in this mode of adsorption
the steroid’s olefinic functionality is available to hexane only via
a narrow angle of trajectories (â-face) through the neighboring
channel. It is likely that both the factorssstate switching and
mode of adsorptionsplay roles in the observed selectivity.
We have shown above that the photochemical behavior of

steroidal enones can be altered with the use of a zeolite as a
reaction medium. We recognize that the models used to rational-
ize the observations are rudimentary. To develop a better model
that would help us predict product selectivity, we need to have a
better understanding of the orientation of the steroid molecules
within a zeolite. Facial selectivity discussed above and regiose-
lectivity presented earlier1 are controlled by a selective adsorption
process steered by cations present within zeolites. Considerable
amount of effort in our laboratory is directed toward understanding
the cation-organic guest interactions within zeolites.
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Scheme 1

Scheme 2

Figure 1. Androstenedione included within NaY. Dark circles represent
Na+. Steroid methyl groups face bottom of the page.
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